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Introduction

combinatorial Tsirelson spaces;

Tsirelson-type spaces;

Tsirelson spaces (the first example of spaces containing no isomorphic copies of c0
or ℓp for 1 ≤ p < ∞).
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Introduction

What are the (linear) isometries
of combinatorial Tsirelson spaces?
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Basic concepts

Notation

[N]<ω is the family of finite subsets of N,

For F1,F2 ∈ [N]<ω

F1 < F2 if maxF1 < minF2,

For n ∈ N
F1 < n if F1 < {n},

For x1, x2 ∈ c00
x1 < x2 if max supp x1 < min supp x2.
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Basic concepts

Definition

A family F ⊂ [N]<ω is regular, whenever it is simultaneously

hereditary
(
F ∈ F and G ⊂ F =⇒ G ∈ F

)
;

spreading
(
{l1, l2, . . . , ln} ∈ F and li ⩽ ki =⇒ {k1, k2, . . . , kn} ∈ F

)
;

compact as a subset of the Cantor set {0, 1}N via the natural identification of
F ∈ F with

χF =
∑
i∈F

ei ∈ {0, 1}N.

Example

An :=
{
F ∈ [N]<ω : |F | ⩽ n

}
∪
{
∅
}

(n ∈ N)
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Natalia Maślany Isometries of combinatorial Tsirelson spaces



Introduction
Basic concepts

Motivations
Main theorem

Basic concepts

Definition

A family F ⊂ [N]<ω is regular, whenever it is simultaneously

hereditary
(
F ∈ F and G ⊂ F =⇒ G ∈ F

)
;

spreading
(
{l1, l2, . . . , ln} ∈ F and li ⩽ ki =⇒ {k1, k2, . . . , kn} ∈ F

)
;

compact as a subset of the Cantor set {0, 1}N via the natural identification of
F ∈ F with

χF =
∑
i∈F

ei ∈ {0, 1}N.

Example

An :=
{
F ∈ [N]<ω : |F | ⩽ n

}
∪
{
∅
}

(n ∈ N)
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Basic concepts

Schreier sets S1

{2, 3}

{4, 9, 5}
{n, n + 1, . . . , 2n − 1}

Not Schreier

{2, 3, 4}

S2-sets

{2, 3, 4} = {2, 3} ∪ {4}
{2, 3, 4, 7, 100, 5} = {2, 3} ∪ {4, 7, 100, 5}
{3, 5, 7, n, n + 1, . . . , 2n − 1} = {3, 5} ∪ {7} ∪ {n, n + 1, . . . , 2n − 1}
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Basic concepts

Definition

Given a countable ordinal α, we define the Schreier family of order α inductively:

S0 := A1;

if α is a successor ordinal

Sα+1 :=

{
d⋃

i=1

S i
α : d ≤ S1

α < S2
α < · · · < Sd

α and
{
S i
α

}d
i=1

⊂ Sα

}
∪
{
∅
}
;

if α is a limit ordinal and (αn)
∞
n=1 is a fixed strictly increasing sequence of

ordinals converging to α

Sα :=
{
Sαn ∈ [N]<ω : Sαn ∈ Sαn for some n ≤ min Sαn

}
∪
{
∅
}
.
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Basic concepts

Notation

For x ∈ c00 and E ∈ [N]<ω let Ex be the projection of the vector x onto the
coordinates belonging to E , i.e.

E

( ∞∑
i=1

aixi

)
=
∑
i∈E

aixi .
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Definition

Fix θ ∈
(
0, 1). Let F be regular family and ∥ · ∥0 be the supremum norm on c00.

Suppose that for some n ∈ N the norm ∥ · ∥n has been defined.

Then

∥x∥n+1 := max

{
∥x∥n,

sup
{
θ

d∑
i=1

∥∥Eix
∥∥
n
: E1 < · · · < Ed in [N]<ω and {minEi}di=1 ∈ F

}}

We define the norm
∥x∥θ,F := sup

n∈N
∥x∥n

and denote by T [θ,F ] the completion of c00 with respect to it.
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Basic concepts

Examples

T
[
θ,Sα

]
for θ ∈ (0, 1), 1 ⩽ α < ω1 - combinatorial Tsirelson spaces;

T
[
θ,S1

]
for θ ∈ (0, 1) - Tsirelson-type spaces;

T
[
1
2 ,S1

]
- Tsirelson spaces.
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Motivations

Theorem (K. Beanland)

Let n ∈ N with n ≥ 2. Then U : T
[
1
n ,S1

]
→ T

[
1
n ,S1

]
is an isometry iff

Uei =

{
±eπ(i), 1 ≤ i ≤ n
±ei , i > n

(i ∈ N)

for some permutation π of
{
1, 2, . . . , n

}
.

Problem

Characterize surjective isometries on T [θ,F ] for θ ∈ (0, 1) and regular families F .
The case of θ = 1

2 and Sα for some countable ordinal α > 1 is especially interesting.
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Main theorem

Theorem 1

Let θ ∈
(
0, 12
]
. If U : T

[
θ,S1

]
→ T

[
θ,S1

]
is an isometry, then

Uei =

{
±eπ(i), 1 ≤ i ≤ ⌈θ−1⌉
±ei , i > ⌈θ−1⌉ (i ∈ N)

for some permutation π of
{
1, 2, . . . , ⌈θ−1⌉

}
.

Theorem 2

Let θ ∈
(
0, 12
]
, 1 < α < ω1. Then an operator U : T [θ,Sα] → T [θ,Sα] is an isometry

iff Uei = ±ei for i ∈ N.
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Main theorem

The idea of the proof of Th. 2. for S2-sets

For any m ∈ N find
y1 < y2 < · · · < ym

such that
∥yi − xji∥ < ε, i = 1, 2, . . . ,m

for some values of isometry xj1 , xj2 , . . . , xjm .

Why is this possible?

The basis (ej)
∞
j=1 is 1-unconditional,

(ej)
∞
j=1 is weakly null,

c00 is dense in T [θ,S2].

Natalia Maślany Isometries of combinatorial Tsirelson spaces



Introduction
Basic concepts

Motivations
Main theorem

Main theorem

The idea of the proof of Th. 2. for S2-sets

For any m ∈ N find
y1 < y2 < · · · < ym

such that
∥yi − xji∥ < ε, i = 1, 2, . . . ,m

for some values of isometry xj1 , xj2 , . . . , xjm .

Why is this possible?

The basis (ej)
∞
j=1 is 1-unconditional,

(ej)
∞
j=1 is weakly null,

c00 is dense in T [θ,S2].
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Natalia Maślany Isometries of combinatorial Tsirelson spaces



Introduction
Basic concepts

Motivations
Main theorem

Main theorem

The idea of the proof of Th. 2. for S2-sets

Ensure that

1
{
j1, j2, . . . , jm

}
is a maximal S2-set

2
{
min supp y2, min supp y3, . . . ,min supp ym

}
is an S2-set.

How to do it?

Fix j1,

Take j2 such that
y2 > max

{
j1,max supp y1

}
,

Choose ’j1- many’ vectors yi in the same way.

Repeat it (’j1- many’ times) to obtain a maximal S2-set from indieces ji .
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y2 > max

{
j1,max supp y1

}
,

Choose ’j1- many’ vectors yi in the same way.

Repeat it (’j1- many’ times) to obtain a maximal S2-set from indieces ji .
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Thank you for your attention!
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