Isometries of combinatorial Tsirelson spaces

Natalia Maślany

Jagiellonian University & Czech Academy of Sciences

IWOTA 2022

Natalia Maślany Isometries of combinatorial Tsirelson spaces

Outline

Natalia Maślany Isometries of combinatorial Tsirelson spaces

æ

Outline

Natalia Maślany Isometries of combinatorial Tsirelson spaces

< ロ > < 回 > < 回 > < 回 > < 回 >

Outline

Natalia Maślany Isometries of combinatorial Tsirelson spaces

< ロ > < 回 > < 回 > < 回 > < 回 >

Outline

Natalia Maślany Isometries of combinatorial Tsirelson spaces

< □ > < 同

• • = • • = •

Introduction

• combinatorial Tsirelson spaces;

< □ > < 同

• • = • • = •

Introduction Basic concepts Motivations

Introduction

- combinatorial Tsirelson spaces;
- Tsirelson-type spaces;

Natalia Maślany Isometries of combinatorial Tsirelson spaces

< □ > < 同

• • • • • • •

Introduction

- combinatorial Tsirelson spaces;
- Tsirelson-type spaces;
- Tsirelson spaces (the first example of spaces containing no isomorphic copies of c₀ or ℓ_p for 1 ≤ p < ∞).

Introduction

What are the (linear) isometries of combinatorial Tsirelson spaces?

Natalia Maślany Isometries of combinatorial Tsirelson spaces

Basic concepts

Notation

• $[\mathbb{N}]^{<\omega}$ is the family of finite subsets of \mathbb{N} ,

イロト イヨト イヨト イヨ

Basic concepts

Notation

- $[\mathbb{N}]^{<\omega}$ is the family of finite subsets of \mathbb{N} ,
- For $F_1, F_2 \in [\mathbb{N}]^{<\omega}$

 $F_1 < F_2$ if max $F_1 < \min F_2$,

→ Ξ →

Basic concepts

Notation

- $[\mathbb{N}]^{<\omega}$ is the family of finite subsets of \mathbb{N} ,
- For $F_1, F_2 \in [\mathbb{N}]^{<\omega}$

 $F_1 < F_2$ if max $F_1 < \min F_2$,

• For $n \in \mathbb{N}$

 $F_1 < n$ if $F_1 < \{n\}$,

> < = > < =

Basic concepts

Notation

- $[\mathbb{N}]^{<\omega}$ is the family of finite subsets of \mathbb{N} ,
- For $F_1, F_2 \in [\mathbb{N}]^{<\omega}$

 $F_1 < F_2$ if max $F_1 < \min F_2$,

• For $n \in \mathbb{N}$

 $F_1 < n$ if $F_1 < \{n\}$,

• For $x_1, x_2 \in c_{00}$

 $x_1 < x_2$ if max supp $x_1 < \min \text{ supp } x_2$.

Basic concepts

Definition

A family $\mathcal{F} \subset [\mathbb{N}]^{<\omega}$ is **regular**, whenever it is simultaneously

• hereditary $(F \in \mathcal{F} \text{ and } G \subset F \implies G \in \mathcal{F})$;

Basic concepts

Definition

A family $\mathcal{F} \subset [\mathbb{N}]^{<\omega}$ is regular, whenever it is simultaneously

- hereditary $(F \in \mathcal{F} \text{ and } G \subset F \implies G \in \mathcal{F})$;
- spreading $(\{l_1, l_2, \ldots, l_n\} \in \mathcal{F} \text{ and } l_i \leqslant k_i \implies \{k_1, k_2, \ldots, k_n\} \in \mathcal{F});$

Basic concepts

Definition

A family $\mathcal{F} \subset [\mathbb{N}]^{<\omega}$ is **regular**, whenever it is simultaneously

- hereditary $(F \in \mathcal{F} \text{ and } G \subset F \implies G \in \mathcal{F})$;
- spreading $(\{l_1, l_2, \ldots, l_n\} \in \mathcal{F} \text{ and } l_i \leqslant k_i \implies \{k_1, k_2, \ldots, k_n\} \in \mathcal{F});$
- compact as a subset of the Cantor set $\{0,1\}^{\mathbb{N}}$ via the natural identification of $F\in\mathcal{F}$ with

$$\chi_F = \sum_{i \in F} e_i \in \{0, 1\}^{\mathbb{N}}.$$

Basic concepts

Definition

A family $\mathcal{F} \subset [\mathbb{N}]^{<\omega}$ is **regular**, whenever it is simultaneously

- hereditary $(F \in \mathcal{F} \text{ and } G \subset F \implies G \in \mathcal{F})$;
- spreading $(\{l_1, l_2, \ldots, l_n\} \in \mathcal{F} \text{ and } l_i \leqslant k_i \implies \{k_1, k_2, \ldots, k_n\} \in \mathcal{F});$
- compact as a subset of the Cantor set $\{0,1\}^{\mathbb{N}}$ via the natural identification of $F\in\mathcal{F}$ with

$$\chi_F = \sum_{i \in F} e_i \in \{0, 1\}^{\mathbb{N}}.$$

Example

$$\mathcal{A}_n := \left\{ F \in [\mathbb{N}]^{<\omega} \colon |F| \leqslant n \right\} \cup \left\{ \emptyset \right\} \quad (n \in \mathbb{N})$$

Basic concepts

Schreier sets \mathcal{S}_1

< ロ > < 回 > < 回 > < 回 > < 回 >

3

Basic concepts

Schreier sets \mathcal{S}_1

- {2,3}
- $\{4, 9, 5\}$

æ

Basic concepts

Schreier sets \mathcal{S}_1

- {2,3}
- {4,9,5}
- $\{n, n+1, ..., 2n-1\}$

イロト イボト イヨト イヨト

э

Basic concepts

Schreier sets \mathcal{S}_1

- {2,3}
- {4,9,5}

•
$$\{n, n+1, \ldots, 2n-1\}$$

Not Schreier

Natalia Maślany Isometries of combinatorial Tsirelson spaces

イロト イボト イヨト イヨト

э

Basic concepts

Schreier sets \mathcal{S}_1

- {2,3}
- {4,9,5}

•
$$\{n, n+1, \ldots, 2n-1\}$$

Not Schreier

S_2 -sets

•
$$\{2,3,4\} = \{2,3\} \cup \{4\}$$

Natalia Maślany Isometries of combinatorial Tsirelson spaces

æ

Basic concepts

Schreier sets \mathcal{S}_1

- {2,3}
- {4,9,5}

•
$$\{n, n+1, \ldots, 2n-1\}$$

Not Schreier

\mathcal{S}_2 -sets

• $\{2,3,4\} = \{2,3\} \cup \{4\}$

•
$$\{2, 3, 4, 7, 100, 5\} = \{2, 3\} \cup \{4, 7, 100, 5\}$$

・ロト ・四ト ・ヨト ・ヨト

æ

Basic concepts

Schreier sets \mathcal{S}_1

- {2,3}
- {4,9,5}

•
$$\{n, n+1, \ldots, 2n-1\}$$

Not Schreier

$\mathcal{S}_2 ext{-sets}$

- $\{2,3,4\} = \{2,3\} \cup \{4\}$
- $\{2,3,4,7,100,5\} = \{2,3\} \cup \{4,7,100,5\}$
- $\{3, 5, 7, n, n+1, \dots, 2n-1\} = \{3, 5\} \cup \{7\} \cup \{n, n+1, \dots, 2n-1\}$

Basic concepts

Definition

Given a countable ordinal α , we define the Schreier family of order α inductively:

Basic concepts

Definition

Given a countable ordinal α , we define the Schreier family of order α inductively:

- $\mathcal{S}_0 := \mathcal{A}_1;$
- if α is a successor ordinal

$$\mathcal{S}_{lpha+1} := \left\{ igcup_{i=1}^d S^i_lpha \colon d \leq S^1_lpha < S^2_lpha < \cdots < S^d_lpha ext{ and } \left\{ S^i_lpha
ight\}_{i=1}^d \subset \mathcal{S}_lpha
ight\} \cup \left\{ \emptyset
ight\}_{i=1}^d$$

Basic concepts

Definition

Given a countable ordinal α , we define the Schreier family of order α inductively:

- $\mathcal{S}_0 := \mathcal{A}_1;$
- if α is a successor ordinal

$$\mathcal{S}_{lpha+1} := \left\{ igcup_{i=1}^d S^i_lpha \colon d \leq S^1_lpha < S^2_lpha < \cdots < S^d_lpha ext{ and } \left\{S^i_lpha
ight\}^d_{i=1} \subset \mathcal{S}_lpha
ight\} \cup \left\{ \emptyset
ight\};$$

if α is a limit ordinal and (α_n)_{n=1}[∞] is a fixed strictly increasing sequence of ordinals converging to α

$$\mathcal{S}_{\alpha} := \big\{ \mathcal{S}_{\alpha_n} \in [\mathbb{N}]^{<\omega} \colon \mathcal{S}_{\alpha_n} \in \mathcal{S}_{\alpha_n} \text{ for some } n \le \min \mathcal{S}_{\alpha_n} \big\} \cup \big\{ \emptyset \big\}.$$

Basic concepts

Notation

For $x \in c_{00}$ and $E \in [\mathbb{N}]^{<\omega}$ let **Ex be the projection** of the vector x onto the coordinates belonging to E, i.e.

$$E\left(\sum_{i=1}^{\infty}a_ix_i\right)=\sum_{i\in E}a_ix_i.$$

< ロ > < 同 > < 三 > < 三

Basic concepts

Definition

Fix $\theta \in (0,1)$. Let \mathcal{F} be regular family and $\|\cdot\|_0$ be the supremum norm on c_{00} . Suppose that for some $n \in \mathbb{N}$ the norm $\|\cdot\|_n$ has been defined.

Natalia Maślany Isometries of combinatorial Tsirelson spaces

イロト イボト イヨト イヨト

Basic concepts

Definition

Fix $\theta \in (0,1)$. Let \mathcal{F} be regular family and $\|\cdot\|_0$ be the supremum norm on c_{00} . Suppose that for some $n \in \mathbb{N}$ the norm $\|\cdot\|_n$ has been defined. Then

$$\|\boldsymbol{x}\|_{\boldsymbol{n+1}} := \max\left\{ \|\boldsymbol{x}\|_{\boldsymbol{n}}, \\ \sup\left\{\theta\sum_{i=1}^{d} \|E_{i}\boldsymbol{x}\|_{\boldsymbol{n}} \colon E_{1} < \dots < E_{d} \text{ in } [\mathbb{N}]^{<\omega} \text{ and } \{\min E_{i}\}_{i=1}^{d} \in \mathcal{F}\right\} \right\}$$

Basic concepts

Definition

Fix $\theta \in (0,1)$. Let \mathcal{F} be regular family and $\|\cdot\|_0$ be the supremum norm on c_{00} . Suppose that for some $n \in \mathbb{N}$ the norm $\|\cdot\|_n$ has been defined. Then

$$\begin{aligned} \|\boldsymbol{x}\|_{\boldsymbol{n+1}} &:= \max\left\{ \|\boldsymbol{x}\|_{\boldsymbol{n}}, \\ \sup\left\{ \theta \sum_{i=1}^{d} \left\| E_{i} \boldsymbol{x} \right\|_{\boldsymbol{n}} \colon E_{1} < \dots < E_{d} \text{ in } [\mathbb{N}]^{<\omega} \text{ and } \{\min E_{i}\}_{i=1}^{d} \in \mathcal{F} \right\} \right\} \end{aligned}$$

We define the norm

$$\|\mathbf{x}\|_{\boldsymbol{ heta},\boldsymbol{\mathcal{F}}} := \sup_{n\in\mathbb{N}} \|\mathbf{x}\|_n$$

Basic concepts

Definition

Fix $\theta \in (0,1)$. Let \mathcal{F} be regular family and $\|\cdot\|_0$ be the supremum norm on c_{00} . Suppose that for some $n \in \mathbb{N}$ the norm $\|\cdot\|_n$ has been defined. Then

$$\begin{aligned} \|\boldsymbol{x}\|_{\boldsymbol{n+1}} &:= \max\left\{ \|\boldsymbol{x}\|_{\boldsymbol{n}}, \\ \sup\left\{ \theta \sum_{i=1}^{d} \left\| E_{i} \boldsymbol{x} \right\|_{\boldsymbol{n}} \colon E_{1} < \dots < E_{d} \text{ in } [\mathbb{N}]^{<\omega} \text{ and } \{\min E_{i}\}_{i=1}^{d} \in \mathcal{F} \right\} \right\} \end{aligned}$$

We define the norm

$$\|\mathbf{x}\|_{\boldsymbol{ heta},\boldsymbol{\mathcal{F}}} := \sup_{n\in\mathbb{N}} \|\mathbf{x}\|_n$$

and denote by $T[\theta, \mathcal{F}]$ the completion of c_{00} with respect to it.

Basic concepts

Examples

- $T[\theta, S_{\alpha}]$ for $\theta \in (0, 1)$, $1 \leq \alpha < \omega_1$ combinatorial Tsirelson spaces;
- $T[heta, \mathcal{S}_1]$ for $heta \in (0, 1)$ Tsirelson-type spaces;
- $T\left[\frac{1}{2}, \mathcal{S}_1\right]$ Tsirelson spaces.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Motivations

Motivations

Theorem (K. Beanland)

Let $n \in \mathbb{N}$ with $n \ge 2$. Then $U: T\left[\frac{1}{n}, S_1\right] \to T\left[\frac{1}{n}, S_1\right]$ is an isometry iff

$$Ue_i = \left\{ egin{array}{cc} \pm e_{\pi(i)}, & 1 \leq i \leq n \ \pm e_i, & i > n \end{array}
ight.$$
 $(i \in \mathbb{N})$

for some permutation π of $\{1, 2, \ldots, n\}$.

Motivations

Motivations

Theorem (K. Beanland)

Let $n \in \mathbb{N}$ with $n \ge 2$. Then $U: T\left[\frac{1}{n}, S_1\right] \to T\left[\frac{1}{n}, S_1\right]$ is an isometry iff

$$Ue_i = \left\{ egin{array}{cc} \pm e_{\pi(i)}, & 1 \leq i \leq n \ \pm e_i, & i > n \end{array}
ight.$$
 $(i \in \mathbb{N})$

for some permutation π of $\{1, 2, \ldots, n\}$.

Problem

Characterize surjective isometries on $T[\theta, \mathcal{F}]$ for $\theta \in (0, 1)$ and regular families \mathcal{F} . The case of $\theta = \frac{1}{2}$ and S_{α} for some countable ordinal $\alpha > 1$ is especially interesting.

くロト く伺下 くきト くきり

Main theorem

Theorem 1

Let $\theta \in \left(0, \frac{1}{2}\right]$. If $U \colon T\left[\theta, S_1\right] \to T\left[\theta, S_1\right]$ is an isometry, then

$$egin{aligned} & U e_i = \left\{ egin{aligned} \pm e_{\pi(i)}, & 1 \leq i \leq \lceil heta^{-1}
ceil \ \pm e_i, & i > \lceil heta^{-1}
ceil \end{aligned}
ight. (i \in \mathbb{N}) \end{aligned}$$

for some permutation π of $\{1, 2, \dots, \lceil \theta^{-1} \rceil\}$.

Main theorem

Theorem 1

Let $\theta \in \left(0, \frac{1}{2}\right]$. If $U \colon T\left[\theta, S_1\right] \to T\left[\theta, S_1\right]$ is an isometry, then

$$egin{aligned} & egin{aligned} & egin{aligned} & \pm e_{\pi(i)}, & 1 \leq i \leq \lceil heta^{-1}
ceil \ & \pm e_i, & i > \lceil heta^{-1}
ceil \end{aligned} & (i \in \mathbb{N}) \end{aligned}$$

for some permutation π of $\{1, 2, \ldots, \lceil \theta^{-1} \rceil\}$.

Theorem 2

Let $\theta \in (0, \frac{1}{2}], 1 < \alpha < \omega_1$. Then an operator $U \colon T[\theta, S_\alpha] \to T[\theta, S_\alpha]$ is an isometry iff $Ue_i = \pm e_i$ for $i \in \mathbb{N}$.

Main theorem

The idea of the proof of Th. 2. for S_2 -sets

For any $m \in \mathbb{N}$ find

$$y_1 < y_2 < \cdots < y_m$$

such that

$$\|y_i-x_{j_i}\|<\varepsilon,\quad i=1,2,\ldots,m$$

for some values of isometry $x_{j_1}, x_{j_2}, \ldots, x_{j_m}$.

Main theorem

The idea of the proof of Th. 2. for S_2 -sets

For any $m \in \mathbb{N}$ find

$$y_1 < y_2 < \cdots < y_m$$

such that

$$\|y_i-x_{j_i}\|<\varepsilon,\quad i=1,2,\ldots,m$$

for some values of isometry $x_{j_1}, x_{j_2}, \ldots, x_{j_m}$.

Why is this possible?

• The basis $(e_j)_{j=1}^{\infty}$ is 1-unconditional,

Main theorem

The idea of the proof of Th. 2. for S_2 -sets

For any $m \in \mathbb{N}$ find

$$y_1 < y_2 < \cdots < y_m$$

such that

$$\|y_i-x_{j_i}\|<\varepsilon,\quad i=1,2,\ldots,m$$

for some values of isometry $x_{j_1}, x_{j_2}, \ldots, x_{j_m}$.

Why is this possible?

- The basis $(e_j)_{i=1}^{\infty}$ is 1-unconditional,
- $(e_j)_{j=1}^\infty$ is weakly null,

Main theorem

The idea of the proof of Th. 2. for S_2 -sets

For any $m \in \mathbb{N}$ find

$$y_1 < y_2 < \cdots < y_m$$

such that

$$\|y_i-x_{j_i}\|<\varepsilon,\quad i=1,2,\ldots,m$$

for some values of isometry $x_{j_1}, x_{j_2}, \ldots, x_{j_m}$.

Why is this possible?

- The basis $(e_j)_{j=1}^{\infty}$ is 1-unconditional,
- $(e_j)_{j=1}^{\infty}$ is weakly null,
- c_{00} is dense in $T[\theta, S_2]$.

Main theorem

The idea of the proof of Th. 2. for S_2 -sets

Ensure that

•
$$\{j_1, j_2, \dots, j_m\}$$
 is a maximal S_2 -set

(日)

▶ ∢ ≣

Main theorem

The idea of the proof of Th. 2. for S_2 -sets

Ensure that

- $\bullet \ \{j_1, j_2, \dots, j_m\} \text{ is a maximal } \mathcal{S}_2\text{-set}$
- **2** { min supp y_2 , min supp y_3, \ldots , min supp y_m } is an S_2 -set.

.

Main theorem

The idea of the proof of Th. 2. for S_2 -sets

Ensure that

- $\bullet \ \{j_1, j_2, \dots, j_m\} \text{ is a maximal } \mathcal{S}_2\text{-set}$
- **2** { min supp y_2 , min supp y_3, \ldots , min supp y_m } is an S_2 -set.

How to do it?

• Fix *j*₁,

Main theorem

The idea of the proof of Th. 2. for S_2 -sets

Ensure that

- $\{j_1, j_2, \ldots, j_m\}$ is a maximal S_2 -set
- **2** { min supp y_2 , min supp y_3, \ldots , min supp y_m } is an S_2 -set.

How to do it?

- Fix *j*₁,
- Take j_2 such that

 $y_2 > \max\{j_1, \max \operatorname{supp} y_1\},$

Main theorem

The idea of the proof of Th. 2. for S_2 -sets

Ensure that

- $\{j_1, j_2, \dots, j_m\}$ is a maximal S_2 -set
- **2** { min supp y_2 , min supp y_3, \ldots , min supp y_m } is an S_2 -set.

How to do it?

- Fix *j*₁,
- Take j_2 such that

$$y_2>\max\big\{j_1,\max\operatorname{supp} y_1\big\},$$

• Choose ' j_1 - many' vectors y_i in the same way.

<ロ> <問> <問> < 回> < 回>

Main theorem

The idea of the proof of Th. 2. for S_2 -sets

Ensure that

- $\bullet \ \{j_1, j_2, \dots, j_m\} \text{ is a maximal } \mathcal{S}_2\text{-set}$
- $\{ \min \operatorname{supp} y_2, \min \operatorname{supp} y_3, \dots, \min \operatorname{supp} y_m \} \text{ is an } S_2 \text{-set.}$

How to do it?

- Fix *j*₁,
- Take j₂ such that

 $y_2 > \max\{j_1, \max \operatorname{supp} y_1\},\$

• Choose ' j_1 - many' vectors y_i in the same way.

Repeat it (' j_1 - many' times) to obtain a maximal S_2 -set from indicces j_i .

Main theorem

Thank you for your attention!

Natalia Maślany Isometries of combinatorial Tsirelson spaces

(신문) (신문)

Bibliography

📄 N. Maślany

Isometries of combinatorial Tsirelson spaces arXiv:2209.00113 [math.FA], 2022

L. Antunes, K. Beanland Surjective isometries on Banach sequence spaces: A survey Concrete Operators, 2022

- C. Brech, V. Ferenczi and A. Tcaciuc Isometries of combinatorial Banach spaces Proc. Am. Math. Soc., 2020
- B. Tsirelson

It is impossible to embed ℓ_p or c_0 into an arbitrary Banach space (Russian) Funkts. Anal. i Prilozhen English translation: Funct. Anal. Appl., 1974